
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014
1905

LETTER

Paging out Multiple Clusters to Improve Virtual Memory System
Performance

Woo Hyun AHN†a), Joon-Woo CHOI††, Jaewon OH†††b), Nonmembers, Seung-Ho LIM††††,
and Kyungbaek KIM†††††, Members

SUMMARY Virtual memory systems page out a cluster of contiguous
modified pages in virtual memory to a swap disk at one disk I/O but cannot
find large clusters in applications mainly changing non-contiguous pages.
Our proposal stores small clusters at one disk I/O. This decreases disk
writes for paging out small clusters, thus improving page-out performance.
key words: virtual memory system, page-out, page clustering, disk

1. Introduction

Main memory sizes in computer systems have increased
over the years. However, many scientific and engineering
applications can still exhaust main memory [1], from which
virtual memory (VM) systems replace VM pages to make
room for new ones. When a dirty page is replaced, it is
stored to swap disk (or swap) via page-out. Later, an ac-
cess to the page incurs a page fault that requires a page-in
fetching the page from swap. Hence, serious memory short-
age leads to excessive page-outs as well as page-ins, which
degrade the VM system performance.

The VM system of 4.4BSD OS [2] uses a page clus-
tering scheme [3] to reduce the disk I/Os required to page
out pages in VM areas of bss, stack, and heap. The scheme
was introduced in Digital UNIX 1.2 based on Mach OS [4]
two decades ago and is currently used in Apple Mac OS [5].
When a victim page is flushed out, the scheme composes a
cluster∗ of the victim and dirty pages under the clustering
condition that they are not only in the same VM area as the
victim but also adjacent to the victim in a VM space. Then,
the cluster is stored to swap at one disk I/O to improve the
page-out performance. Furthermore, the clustering allows
a prefetching scheme to reduce page faults: if accessing a

Manuscript received November 19, 2013.
Manuscript revised March 4, 2014.
†The author is with the Department of Computer Science,

Kwangwoon University, Seoul, Korea.
††The author is with TmaxSoft Inc., Seungnam-si, Gyeonggi-

do, Korea.
†††The author is with the School of Computer Science and Infor-

mation Engineering, The Catholic University of Korea, Bucheon,
Gyeonggi-do, Korea.
††††The author is with the Department of Digital Information

Engineering, Hankuk University of Foreign Studies, Yongin-si,
Gyeonggi-do, Korea.
†††††The author is with the Department of Electronics and

Computer Engineering, Chonnam National University, Gwangju,
Korea.

a) E-mail: whahn@kw.ac.kr
b) E-mail: jwoh@catholic.ac.kr (Corresponding author)

DOI: 10.1587/transinf.E97.D.1905

page causes a page fault, the prefetching retrieves the page
and others adjacent to the page, both in a VM space and on
swap, at one disk I/O. If the prefetched pages are accessed
before being evicted, the VM system avoids page faults that
would need disk accesses to fetch the pages.

However, there has not been any research to evaluate
how the clustering scheme of BSD VM affects the VM per-
formance, even though the scheme has been used in some
commercial OSes. More importantly, the clustering has
overlooked the challenge of applications [6] not having a
high spatial locality of page writes. Such applications can
mostly write sets of only a few pages that are contiguous
with each other in a VM space. This behavior disables the
scheme to compose large clusters of enough pages to reduce
disk writes for page-outs, thus degrading the performance
improvement of page-outs. Moreover, the scheme can com-
pose extremely small clusters of only one page if pages not
contiguous with each other are mainly modified.

In related studies, Linux uses page clustering [7] to re-
duce page-outs rather than page-ins. The scheme flushes
a cluster of 32 pages including a victim and dirty pages
that follow the victim in the access order without consid-
ering the page adjacency in a VM space. Upon a page fault,
Linux prefetches seven pages physically contiguous around
the faulted page on swap. However, the pages may not be
accessed if their access order differs from that in which the
pages were accessed before being flushed. Another study [8]
compresses multiple pages into a page to keep more pages in
main memory, thus enabling the flushing of the compressed
page to have a similar effect as if several pages were trans-
ferred at one disk I/O. However, the approach incurs large
page access time because pages should be uncompressed be-
fore being accessed.

This paper proposes a new scheme called multiple-
clustering (mClustering) to speed up page-outs of small
clusters in BSD VM without degrading the performance of
page-ins. mClustering is integrated into the 4.4BSD kernel
with small change on the VM structure in order to support
a key idea: multiple clusters to be paged out are collected
into a large chunk, which is flushed to swap at a single disk
I/O. Such a multiple-cluster transfer decreases disk writes
that result from flushing small clusters out. Further, when
collecting clusters into a chunk, our scheme composes each

∗The BSD VM system can store a cluster of up to 16 pages at
one disk I/O.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



1906
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Fig. 1 The comparison of page-outs between BSD VM and mClustering. Three clusters C1, C2, and
C3 are composed of using pages as follows: C1 = {PA

1 , PA
2 , PA

3 , PA
4 }, C2 = {PB

6 }, C3 = {PC
8 }.

Fig. 2 Flushing clusters in a buffer that is not filled up with pages. Seven using pages compose three
clusters: C1 = {PA

1 , PA
2 }, C2 = {PB

4 , PB
5 }, C3 = {PC

7 , PC
8 , PC

9 }.

cluster in order to avoid making its pages positioned away
from each other on swap, similarly to BSD VM. This allows
the prefetching to retrieve a comparable number of pages to
BSD VM on a page fault.

2. Paging out Multiple Clusters

In BSD VM, the page-out daemon runs when there are not
enough pages in the free list where page faults are handled.
The daemon scans from the least recently used page in the
front of the inactive list that has pages not accessed for a
long time. The scanning continues until a desired number of
pages are evicted to the free list. When BSD VM intends to
evict a using victim page from the inactive list, mClustering
triggers a clustering operation with three phases: the first is
to compose a cluster of the victim and using pages satisfying
the clustering condition in the inactive list and to put the
cluster into a buffer of 16 pages. The second is to scan from
the next page of the victim in the inactive list to find another
victim and to collect a cluster for the victim into the buffer.
This operation continues until the buffer is either filled up
with 16 pages or does not have available space for a new
cluster. Finally, all pages of the buffer are stored to one of
the large free spaces on swap at one disk I/O.

Figure 1 illustrates how mClustering reduces disk
writes for page-outs, compared with the page clustering of
BSD VM in a scenario: there are six using pages in the in-
active list and a buffer has room for six pages. Pm

n repre-
sents a page that has a unique number n in a VM space and
is included in a VM area m. As shown in Fig. 1 (a), when
flushing victim PA

2 in the front of the list in step 1, BSD VM
composes cluster C1 of the victim and three pages adjacent
to the victim in the inactive list, to store the cluster at one
disk I/O. In step 2 and 3, however, victims PB

6 and PC
8 do

not have any adjacent page in the list. Each of the victims
composes clusters C2 and C3, which are flushed in two disk
I/Os. Note that BSD VM moves an unused page PX

9 to the
free list without flushing the page.

Figure 1 (b) shows a clustering operation of mCluster-
ing in the same scenario as Fig. 1 (a). When choosing page
PA

2 as a victim to flush, the scheme puts cluster C1 into a
buffer, similarly to BSD VM. Then, C2 and C3 are collected
into the available space of the buffer, differently from BSD
VM. The three clusters collected into the buffer constitute
a chunk, all pages of which are flushed to swap at one disk
write. Hence, mClustering issues two fewer disk I/Os than
BSD VM.

There may not be enough available room in a buffer
to collect a new cluster after some clusters have been col-
lected into the buffer, as shown in Fig. 2 where PA

1 , PB
4 and

PC
7 are chosen as victims in the order. In step 1, mCluster-

ing collects clusters C1 and C2 for PA
1 and PB

4 into a buffer,
but cluster C3 for PC

7 cannot be done into the buffer with the
available room for two pages. If only PC

7 and PC
8 are flushed

along with C1 and C2 after being collected into the buffer,
the two pages can be placed at a disk location away from
PC

9 that will be flushed in a subsequent flushing. This place-
ment disables the prefetching to retrieve the three pages at
one disk I/O when one page of C3 is faulted. To solve this
problem, mClustering does not put the proper subset of C3

into the buffer, but flushes only C1 and C2 that have already
been put into the buffer. After the flushing, all pages of C3

are collected into the buffer in step 2 and are stored to swap
via the next flushing operation.

mClustering uses the same policy as BSD VM to de-
cide which pages around a victim in a VM space compose
a cluster. The policy traverses eight pages backward from
the victim and then eight pages forward from the next page
of the victim. If the traversed 16 pages meet the clustering
condition, they are collected to compose a cluster; other-
wise, if a page not meeting the condition is detected during
either the forward or the backward traverse, the policy col-
lects pages traversed till then and scans pages in the other
direction until collecting a total of 16 adjacent pages. Nev-
ertheless, if 16 pages are not collected, the pages collected
till then compose a cluster.



LETTER
1907

When storing pages of a buffer to swap, mCluster-
ing uses a swap space allocation policy considering the
multiple-cluster transfer. BSD VM attempts to allocate a
contiguous free space large enough to contain pages of a
cluster on swap. If not successful, it allocates the largest
contiguous free space ranging from 15 pages to one page
and flushes a proper subset of the cluster to the space. This
flushing method is applied to the remaining pages of the
cluster again, which can be stored away from the pages
flushed before. In contrast, mClustering attempts to allocate
a contiguous free space enough for all clusters in a buffer.
If it fails, it allocates a contiguous free space to each of the
clusters, which is flushed to its corresponding free space.
Such an allocation prevents pages of a cluster from being
separated from each other on swap. Nevertheless, if there is
not any contiguous free space enough for a cluster, its pages
are stored via the flushing method of BSD VM.

Algorithm 1 describes a clustering operation of mClus-
tering implemented in the page-out routine of BSD VM,
which is called when a page is chosen as a victim to be
flushed in scanning the inactive list. The algorithm first
composes a cluster of a victim and pages meeting the clus-
tering condition (line 3). If a buffer has available space to
contain the cluster (line 6), pages of the cluster are put into
the buffer to be combined with other clusters that have been
collected in the previous clustering operations. However, if
the buffer does not have enough available room (line 8), the
cluster is not put into the buffer, but pages of clusters col-
lected in the buffer until then are flushed at a single disk I/O
(line 9). After the flushing, the buffer is emptied to contain
the cluster that could not be put into the buffer due to the
lack of space (line 10–11). Finally, a buffer can contain the
last using page from the inactive list (line 13). This indi-
cates that there are no using pages to flush in the inactive
list. Hence, mClustering flushes pages of the buffer to swap.

Algorithm 1 mClustering Algorithm
1: // let m be the maximum number of pages that a buffer bu f can contain
2: // let p be a current victim page
3: set cluster to a cluster of p and using pages that are in the same VM

area with p and contiguous with p in VM space
4: set c to the number of pages in cluster
5: set t to the total number of pages in bu f
6: if c + t <= m then
7: put cluster into bu f
8: else
9: store pages of bu f to disk

10: reset bu f
11: put cluster into bu f
12: end if
13: if bu f includes the last using page from inactive list then
14: do the same steps as lines 9–10
15: end if

3. Experimental Evaluations

3.1 Experimental Setup

Our experiments were conducted on a computer with 3.5

GHz Intel Core i7 CPU, 1GB DDR3 memory, and Seagate
160GB 7200RPM disk in FreeBSD 8.2 OS. The testing vir-
tual memory systems were configured in the default setting:
4KB page size and 2GB swap partition, which uses 4KB
block as a unit to store a page.

We evaluate the performance of mClustering and BSD
VM using two memory-intensive benchmarks of LU and
SOR, respectively, in nbench [9] and Scimark2 [10] bench-
mark suites that are popularly used to measure CPU and
memory system speed. Each benchmark is set to have vir-
tual memory usages of 1.3GB, 1.5GB, and 1.7GB. Such a
setting is based on a study [8] that executes benchmarks with
the three virtual memory usages on computer systems hav-
ing 1GB main memory.

The following parameters are used as performance
metrics in the three virtual memory usages: the number of
page-outs and page-ins, the execution time of benchmarks.
Further, the distribution of cluster sizes in 1.5GB virtual
memory usage is measured to show how many disk I/Os are
issued according to cluster size that represents the number
of pages in a cluster. Each benchmark has a similar distri-
bution of cluster sizes in the three virtual memory usages.

3.2 LU Benchmark

Figure 3 (a) shows that mClustering outperforms BSD VM
by 13%, 16%, and 18% in the execution time on the exper-
iment of 1.3GB, 1.5GB, and 1.7GB virtual memory usages,
respectively. This is because mClustering generates fewer
disk writes than BSD VM by 36%, 38%, and 41% each,
as shown in Fig. 3 (b). Flushing multiple clusters reduces
small disk writes that would be needed to flush small clus-
ters of either one page or only a few ones in BSD VM. Fig-
ure 3 (c) shows how the multiple-cluster transfer affects the
clustering behavior, as compared to BSD VM: disk writes in
mClustering are dominantly for clusters of 16 pages, while
BSD VM incurs a large portion of disk writes for clusters
ranging between one and four pages. In particular, the sig-
nificant reduction of disk writes for one page allows mClus-
tering to improve the performance of page-outs. Moreover,
the larger virtual memory usage gives mClustering more op-
portunities to reduce disk I/Os for page-outs, thus making
the scheme further improve the page-out performance.

It is noticeable that mClustering is comparable to BSD
VM in the number of page-ins in Fig. 3 (b). This result in-
dicates that mClustering can improve the performance of
page-outs without degrading that of page-ins. For the pur-
pose, mClustering does not greedily flush as many pages
as possible at a single disk I/O, but keeps efficiency of the
prefetching by collecting pages into a buffer in a cluster unit.

3.3 SOR Benchmark

Figure 4 (a) shows that mClustering improves the execution
time over BSD VM by 12%, 17%, and 23% in each virtual
memory usage, with the help of decrease in disk I/Os for
page-outs over BSD VM by 5%, 8%, and 13% in Fig. 4 (b).



1908
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

(a) The execution time

(b) The number of page-ins and page-outs

(c) The distribution of cluster sizes in
1.5GB virtual memory usage

Fig. 3 LU benchmark performance.

As shown in Fig. 4 (c), mClustering lessens disk writes for
clusters of less than eight pages and increases those for clus-
ters of 10, 13, 14, and 15 pages, but not for 16 pages. Be-
sides clusters of one page, disk writes are largely dropped in
clusters of two, three, four, five, and seven pages. However,
such a cluster is likely to be larger than the available room
of a buffer in which one or more clusters have already been
collected. If mClustering attempts to collect the cluster into
the buffer, it flushes the pages of the buffer that has not been
filled up with 16 pages. Such a flushing makes mClustering
fail to increase disk writes for clusters of 16 pages in SOR.

3.4 Discussion

mClustering may not improve the VM performance over
BSD VM in the following situations. The first is when an
application mainly changes contiguous pages in a VM space
due to the highly strong locality of page writes. Such a write
pattern makes both of the two schemes flush nearly 16 con-
tiguous pages at one disk I/O, thus causing mClustering not
to outperform BSD VM. However, the experiment on SOR
described in Sect. 3.3 shows that mClustering can outper-

(a) The execution time

(b) The number of page-ins and page-outs

(c) The distribution of cluster sizes in
1.5GB virtual memory usage

Fig. 4 SOR benchmark performance.

form BSD VM in an application that has the strong locality
but causes not a few disk writes for small clusters. The sec-
ond is when an application incurs page-ins more dominantly
than page-outs. mClustering cannot improve the execution
time of the application, even though the scheme significantly
reduces disk I/Os for page-outs as compared with BSD VM.
The third situation is when an application incurs the serious
fragmentation of a swap disk. mClustering attempts to al-
locate a contiguous free space enough for multiple clusters,
but can fail to find such a free space. The failure causes
mClustering to flush each of the clusters at separate disk
I/Os, similarly to BSD VM, thus disabling mClustering to
reduce disk I/Os for page-outs.

4. Conclusions

mClustering reduces disk writes that BSD VM incurs in
flushing dirty pages out, without sacrificing the performance
of page-ins. This improvement is achieved by collecting
small clusters of pages into large chunks, which are flushed
in large disk I/Os. Our scheme significantly speeds up the
execution of applications not having strong spatial locality



LETTER
1909

of page writes. Finally, we expect that mClustering can be
easily applied to other OSes because only a small change is
needed on the page-out routine to support paging out multi-
ple clusters.

Acknowledgements

This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (No. 2011–0013781, No. 2012–0008457, No.
2010–0021094). The work reported in this paper was con-
ducted during the sabbatical year of Kwangwoon University
in 2012. This work was supported by the Catholic Univer-
sity of Korea, Research Fund, 2014.

References

[1] R. Azimi, L. Soares, M. Stumm, T. Walshand, and A.D. Brown,

“PATH: page access tracking to improve memory management,”
Proc. Int. Symp. on Memory Management, pp.31–42, 2007.

[2] M.K. McKusick and G.V. Neville-Neil, The Design and Implemen-
tation of the FreeBSD Operating System, Addison-Wesley, 2005.

[3] D.L. Black, J. Carter, G. Feinberg, R. MacDonald, J.V. Sciver, P.
Wang, S. Mangalat, and E. Sheinbrood, “OSF/1 virtual memory im-
provements,” Proc. USENIX Mach Symp., pp.87–104, 1991.

[4] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Teva-
nian, and M. Young, “Mach: a new kernel foundation for UNIX
development,” Proc. USENIX Summer Conf., pp.93–112, 1986.

[5] A. Singh, Mac OS X Internals, Addison-Wesley, 2006.
[6] R.C. Murphy and P.M. Kogge, “On the memory access patterns of

supercomputer applications: benchmark selection and its implica-
tions,” IEEE Trans. Comput., vol.56, no.7, pp.937–945, 2007.

[7] M. Gorman, Understanding the Linux Virtual Memory Manager,
Prentice-Hall, 2004.

[8] I.C. Tuduce and T. Gross, “Adaptive main memory compression,”
Proc. USENIX Annual Tech. Conf., pp.237–250, 2005.

[9] nbench benchmark http://www.tux.org/˜mayer/linux/bmark.html
[10] Scimark2 benchmark http://math.nist.gov/scimark2


